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ABSTRACT

Rhodium-catalyzed oxygen transfer was used to generate benzyl 2-silyl-2-oxoacetates in good yields. The hydrogenation of these compounds
led to chiral r-silyl-substituted r-hydroxyacetic acids. Resolution by means of HPLC using a chiral stationary phase afforded an enantiomerically
pure representative of this class of compounds, which was successfully applied as a chiral ligand in an asymmetric aldol-type reaction.

Chiral R-hydroxyacids are important components of natural
products and may be incorporated as diversely modified
building blocks in asymmetric synthesis.1 In past years,
numerous effective methods have been developed in order
to obtain enantiomerically pureR-hydroxyacids.2 In this
communication we describe the synthesis and structure of
R-silyl-substitutedR-hydroxyacetic acids13 and illustrate the

successful implementation of these compounds as ligands
in asymmetric catalysis.

The benzyl 2-silyl-2-oxoacetates2 play a major role in
the synthesis of1. In general, various practical routes leading
to R-ketoesters are known, including the ozonolysis of
alkynes4a and diazocompounds4b or the oxidation of the latter
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substrates using MCPBA5 or dioxiranes.6 Furthermore,
photooxidative reactions have also been described.7 Catalytic
variants are particularly attractive and are gaining attention
due to their unusual chemoselectivity.8 On this basis, we
chose the rhodium-catalyzed reaction of benzyl 2-silyl-2-
diazoacetates39 with propylene oxide48a to prepare2. The
benzyl 2-silyl-2-oxoacetates2 were obtained in good yields,
and the best results were found for2b and2c (up to 95%,
Table 1). In contrast,3e proved inert to these reaction

conditions, most probably because of steric hindrance, and
the diazocompound3d underwent an intramolecular C-H
insertion reaction to form silacyclobutane5.10

Next, we studied the palladium-catalyzed reduction of the
silylketoesters2 using molecular hydrogen and palladium

on charcoal. To our surprise, this reaction led to the formation
of the novelR-triorganylsilyl-R-hydroxyacetic acids1 (Table
2) in up to 89% yield. This result was unexpected, since

prior work involving hydrogenation ofR-ketobenzyl esters
resulted in debenzylation with formation of the corresponding
R-ketoacids.11 In the case of the dimethylphenylsilyl deriva-
tive 2f, the reaction behavior was even completely reversed,
such that the benzyl ester6f was obtained solely via reduction
of the R-keto group.

An X-ray crystal structure analysis confirmed the constitu-
tion of the racemicR-silyl-substitutedR-hydroxyacetic acid
1c (Figure 1).12 The Si-C1 bond 1.927(2) Å inrac-1c is

significantly longer than those between the silicon atom and
C3 [1.861(3) Å], C4 [1.863(3) Å], and C5 [1.893(3) Å]; the
last three lengths fall within the range that is considered
average for a bond between a four-coordinate Si atom and
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Table 1. Synthesis of Benzyl 2-Silyl-2-oxoacetates2

entry diazoester R1/2 R3 product yield (%)

1 3a Me Me 2a 82
2 3b Et Et 2b 89
3 3c Me tBu 2c 95
4 3d Me Thex 5 91
5 3e iPr iPr
6 3f Me Ph 3f 85
7 3g Ph Me 2g 88
8 3h Ph Ph 2h 81

Scheme 1

Table 2. Synthesis ofR-Triorganylsilyl-R-hydroxyacetic Acids
1

entry 2 product yield (%)

1 a 1a 78
2 b 1b 85
3 c 1c 89
4 f 6f 67

Figure 1. Molecular crystal structure ofrac-1c. Selected distances
[Å] and angles [deg]: Si-C1 1.927(2), O1-C1 1.427(3), C2-C1
1.492(3), C2-O2 1.209(3), C2-O3 1.320(3); C2-C1-Si 114.67-
(15), O1-C1-Si 109.75(15), O1-C1-C2 111.5(2), C5-Si-C1
112.58(12), C4-Si-C3 110.14(19), C3-Si-C5 111.04(15), C4-
Si-C5 110.80(16).
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an sp3-hybridized carbon atom [1.863(24) Å].13 Analogous
observations were made in the case of the crystal structure
of a comparably protectedR-amino acid.9

The study was further extended in order to resolve racemic
1a into its enantiomers. However, this was initially unsuc-
cessful, and the first enantiomerically pureR-triorganylsilyl-
R-hydroxyacetic acid was finally obtained via a three-step
strategy (Scheme 2). First,R-ketoester2a was reduced to

R-hydroxybenzyl esterrac-6ausing sodium borohydride in
THF at 0 °C, and second, the enantiomers of the latter
compound were separated using preparative HPLC.14 There-
after, a palladium-catalyzed hydrogenolytic debenzylation of
the (+)-enantiomer of6a afforded (+)-1ain 76% yield.15

Next, we were interested in determining whether the
R-silylated R-hydroxyacetic acids could be used as chiral
ligands in asymmetric catalysis. The aldol-type reaction

between benzaldehyde7 and silylketeneketal8 in the
presence of 10 mol % (+)-1a and a borane-THF complex
was chosen to test this hypothesis (Scheme 3).16 Running

the reaction with an in situ generated CAB-type17 catalyst
showed a considerably high asymmetric induction, producing
(S)-9 in 86% ee.18

This result opens up the possibility of using chiral
R-triorganosilyl-R-hydroxyacids in other catalytic reactions,
and extending their scope as a new class of ligands.19

In conclusion, we have synthesized the novelR-silyl-
substitutedR-hydroxyacetic acids and proved their structure
by means of X-ray crystallography. Moreover, the synthetic
utility of these compounds as ligands in asymmetric catalysis
has been illustrated. Further applications are currently
underway and will be reported in due course.
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